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Abstract

First we are going to learn concepts of special theory of relativity
from basic postulates. We then introduce Tensors and Tensor calculus
and after that we deal with basic General Relativity. We are using
the Einstein notation(1916) and not the new Abstract index notation
of Penrose and Rindler(1984).
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1 Introduction to Special Relativity

1.1 Newtonian Relativity

x′ = x− vt
y′ = y
z′ = z
t′ = t

Table 1.1: Galilean Transformations

Newtonian Relativity(also called as Galilean invariance) is a Principle
of relativity based on the Galilean Transformations(S ′ frame is moving
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toward right along x-axis with speed v wrt S) given in Table 1. Newtonian
Relativity states that -

The laws of mechanics are invariant under a Galilean Trans-
formation.

This Principle of relativity was initially stated only for laws of Mechanics. For
centuries people believed in both Galilean Transformations and Newtonian
Relativity.

∇ · E = ρ
ε0

∇× E = −∂B
∂t

∇ ·B = 0
c2(∇×B) = j

ε0
+ ∂E

∂t

Table 1.2: Maxwell’s Equations

Table 2 contains Maxwell’s equations which when combined with Lorentz
force law(F = q(E + v×B)) explains us Electrodynamics. These equations
predicted that the speed of electromagnetic waves is c (around 3× 108m/s).
Since most of the waves then known used to propagate through some medium
they assumed it is the speed in through a medium which was named as ether.
But after this there were some inconsistencies with classical mechanics in
electrodynamics phenomena. So they came up with these 3 possibilities

1. A relativity principle exists for mechanics, but not for electrodynamics;
in electrodynamics there is a preferred inertial frame; that is,the ether
frame. If this alternative is correct the Galilean transformations would
apply and we would be able to locate the ether frame experimentally.

2. A relativity principle exists both for mechanics and for electrodynamics,
but the laws of electrodynamics as given by Maxwell are not correct.
The Galilean transformations would apply here also.

3. A relativity principle exists both for mechanics and for electrodynamics,
but the Galilean transformations and the laws of mechanics as given
by Newton are not correct.

People proposed a lot of different theories to make them consistent. Among
them Lorentz, Fitzgerald and Larmor used complex and wrong arguments
and got correct equations which are now called Lorentz transformations.
Although they got the correct equations what they understood from that
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was wrong. Poincaré based on Michelson–Morley experiment suggested
that the ether theories are wrong and he opted for the 3rd option. But none
of them succeeded except Albert Einstein who also chose the 3rd option
and created his Special Relativity which was later verified to be true.
The biggest success of Einstein was that he thought that time may not be
absolute. In fact the forth equation in Galilean transformations was never
explicitly written because it was assumed to be obvious. But Newton still
explicitly wrote it in his Principia -

Absolute, true and mathematical time, of itself, and from its own
nature flows equably without regard to anything external, and by
another name is called duration.

Einstein’s Special Relativity was made from these 2 postulates-

1. The laws of physics are the same in all inertial systems. No preferred
inertial frame exists.(Notice not just laws of Mechanics)

2. The speed of light in free space has the same value c in all inertial
systems.

Figure 1.1: Einstein around 1905(Source:Wikipedia)

1.2 The Relativity of Simultaneity

Synchronisation of clocks: When we say a reference frame we are re-
ferring to imaginary clocks which are point sized and are everywhere in the
universe and sticks which are at 1m length(in that frame). Now to synchro-
nize all these clocks we send light signals from a point clock when it is set
to t = 0 to all other clocks and other clock are set such that if they are
at a distance of r from the point then they are set to t = r/c. We define
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measurement of length as the difference between coordinates at an single
instant.

Figure 1.2: wrt S frame(source:Fundamental laws of Mechanics)

Imagine a rod moving along x-axis in S frame with same speed as S ′ as
shown in figure 2. Now let a light pulse be ejected from the middle point
O. Then wrt K frame it will touch A first and then B because it travel at
the speed of c and point A is moving towards O. But in S ′ frame it touches
both frames at the same time since A and B are at rest.So, simultaneity is
relative.

1.3 Deriving the Lorentz Transformations

An event is characterized by co-ordinates of space and time in a reference
frame. Let an event be characterized x′, y′, z′, t′ in S ′ and x, y, z, t in S.
We are assuming that space is isotropic and homogeneous. So there is no
preferred angle. If the equations are non linear then it would violate the
homogeneity. So, the most general transformations are(all coefficients are
only functions of v)-

x′ = allx+ al2y + al3z + al4t
y′ = a2lx+ a22y + a23z + a24t
z′ = a3lx+ a32y + a33z + a34t
t′ = a4lx+ a42y + a43z + a44t

If v = 0 then both frames coincide so all, a22, a33anda44 are equal to 1
when v = 0.

The x-axis coincides continuously with the x′-axis. This will be so only if
for y = 0, z = 0 (which characterizes points on the x-axis) it always follows
that y′ = 0, z′ = 0 (which characterizes points on the x’-axis). Hence, the
transformation formulas for y and z must be of the form

y′ = a22y + a23z
z′ = a32y + a33z

similarly, for the x− z and x′ − z′ planes, y = 0 should give y′ = O. Hence,
it follows that a23 and a32 are zero so that
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y′ = a22y
z′ = a33z

Now imagine a rod on y-axis between origin and y = 1m. It’s length
will be a22 in S ′ frame. Now let there be a 1m in S ′ frame which in s fram
will have length 1

a22
. Now because of 1st postulate these two should be equal

because both are 1m length rods and are observed by a frame moving at
speed v. So, a22 = 1

a22
. So a22 = 1. Similarly a33 = 1 .a42 and a43 have to be

0. Otherwise, clocks placed symmetrically in the y-z plane (such as at +y,
-y or +z, -z) about the x-axis would appear to disagree as observed from S ′,
which would contradict the isotropy of space. We know that a point having
x′ = 0 appears to move in the direction of the positive x-axis with speed v,
so that the statement x′ = 0 must be identical to the statement x = vt. So,
they are reduced to

x′ = a11(x− vt)
y′ = y
z′ = z

t′ = a41x+ a44t

Now we can use the 2nd postulate.Let us assume that at the time t = 0 a
spherical electromagnetic wave leaves the origin of S, which coincides with
the origin of S ′ at that moment. The wave propagates with a speed c in
all directions in each inertial frame. Its progress, then, is described by the
equation of sphere whose radius expands with time at a rate c in terms of
either the primed or unprimed set of coordinates. That is,

x2 + y2 + z2 = c2t2

x′2 + y′2 + z′2 = c2t′2

If we now substitute the 4 transformations in the above equation for the
primed coordinates we get

a11(x− vt)2 + y2 + z2 = c2(a41x+ a44t)
⇒ (a2

11 − c2a2
41)x2 + y2 + z2 − 2(va2

11 + c2a41a44) = (c2a2
44 − v2a2

11)t2

which gives

a2
11 − c2a2

41 = 1
va2

11 + c2a41a44 = 0
c2a2

44 − v2a2
11 = c2
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On solving we get

x′ =
x− vt√
1− (v

c
)2

(1.1)

y′ = y (1.2)

z′ = z (1.3)

t′ =
t− v

c2
x√

1− (v
c
)2

(1.4)

The equations 1 to 4 are referred to as Lorentz transformations. We can
also find the reverse equations for them by solving equations 1 and 4. Notice
that we get −v instead of v as expected.

From S to S ′ From S ′ to S

x′ =
x− vt√
1− (

v

c
)2

x =
x′ + vt′√
1− (

v

c
)2

y′ = y y = y′

z′ = z z = z′

t′ =
t− v

c2
x√

1− (
v

c
)2

t =
t′ +

v

c2
x′√

1− (
v

c
)2

Table 1.3: Lorentz Transformations

The Lorentz transformations reduce to the Galilean transformations in
the limit c→∞ or v

c
<< 1

1.4 Simple consequences of Lorentz transformations

The Lorentz Transformations have many beautiful consequences some of
them are:

1.4.1 Lorentz contraction

Let there be a rod in S frame along x-axis form (x1,0,0) to (x2,0,0) Form
this we get
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x′1 =
x1 − vt1√
1− (

v

c
)2

x′2 =
x2 − vt2√
1− (

v

c
)2

⇒ x′2 − x′1 =
x2 − x1 − v(t2 − t1)√

1− (
v

c
)2

But we measure the length of rod in S in a single instant. So t2 = t1 and we
get

x′2 − x′1 =
x2 − x1√
1− (

v

c
)2

So the length is contracted along the direction of motion only. Also we call
the length of an object measured in a frame in which it is at rest as Proper
length(l0). We define γ = 1√

1−(
v

c
)2

and β = v
c
. In all other frames it’s length

will be contracted in the x direction by a factor of γ.

l =
l0
γ

We tend to think that the relativistic length contraction would cause rapidly
moving objects to appear to the eye to be shortened in the direction of
motion. The location of all points of the object measured at the same time
would give the ”true” picture according to our use of the term ”observer” in
relativity. In the words of V. F. Weisskopf

“When we see or photograph an object, we record light quanta emitted
by the object when they arrive simultaneously at the retina or at the pho-
tographic film. This implies that these light quanta have not been emitted
simultaneously by all points of the object. The points further away from the
observer have emitted their part of the picture earlier than the closer points.
Hence, if the object is in motion, the eye or the photograph gets a distorted
picture of the object, since the object has been at different locations when
different parts of it have emitted the light seen in the picture.”

1.4.2 Time dilation

Let there be some event going on the point (x, y, z) from t1 to t2 Let t′1, t
′
2 be

the corresponding in S ′ then

t′1 =
t1 −

v

c2
x√

1− (
v

c
)2

and t′2 =
t2 −

v

c2
x√

1− (
v

c
)2

⇒ t′2 − t′1 =
t2 − t1√
1− (

v

c
)2
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So we can observe that time interval measured in the frame where the
event is happening at a single place is the smallest interval and is called
Proper time(dτ) and time interval in some other frame is given by

∆t = γ∆τ

Example 1: If a pion has proper life time = 1.77 × 10−8s and it’s velocity
relative to the lab is 0.99c. Then calculate the distance travelled by it in the
lab frame.

Sol=

∆τ = 1.77× 10−8s
∆t = γ∆τ ⇒ ∆t ≈ 1.3× 10−7s

d = v∆t ≈ 39m

1.5 The relativistic addition of velocities

From the Galilean transformations we can simply deduce u=u’+v. Now we
have to generalize it. We define velocity of an object in a frame as change
in distance by change in time both observed in the same reference frame
.From Lorentz equations we get

dx = γv(dx
′ + vt′), dt = dy′, dz = dz′

⇒ dx

dt
=

γv(dx
′ + vt′)

γv(dt′ +
v

c2
dx′)

,
dy

dt
=

dy′

γv(dt′ +
v

c2
dx′)

,
dz

dt
=

dz′

γv(dt′ +
v

c2
dx′)

⇒ ux =

dx′

dt′
+ v

1 +
v

c2

dx′

dt′

, uy =

dy′

dt′

γv(1 +
v

c2

dx′

dt′
)

, uz =

dz′

dt′

γv(1 +
v

c2

dx′

dt′
)

Example 2: Let a photon be moving at the speed of c along x′ axis in S ′

frame find it’s speed with respect to S. Sol:

u′x = c

ux =
u′x + v

1 +
v

c2
u′x

ux =
c+ v

1 +
v

c2
c

ux = c

This is what we expect since this is our postulate. In the general case where
the light pulse is along some random direction it still maintains it’s speed c
in other frames but the direction will change.
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From S to S ′ From S ′ to S

u′x =
ux − v

1− v

c2
ux

ux =
u′x + v

1 +
v

c2
u′x

u′y =
uy

γv(1−
v

c2
ux)

uy =
u′y

γv(1 +
v

c2
u′x)

u′z =
uz

γv(1−
v

c2
ux)

uz =
u′z

γv(1 +
v

c2
u′x)

Table 1.4: Relativistic relative velocity

1.6 Aberration and Doppler Effect in Relativity

Let plane monochromatic light waves of unit amplitude be emitted from a
source at the origin of the S ′-frame making an angle θ with the x′-axis and
the normals being perpendicular t x′ − y′plane, with the below equation()

cos 2π(
x′ cos θ′ + y′ sin θ

λ′
− ν ′t′)

We know that λ′v′ = c. Let θandλ be it’s values in the S frame. In the S
frame it’s equation will be-

cos 2π(
x cos θ + y sin θ

λ
− νt)

Now substituting Lorentz transformations in the first wave equation-

cos 2π(

x− vt√
1− β2

cos θ′ + y sin θ

λ′
− ν ′(

t− v

c2
x√

1− β2
))

⇒ cos 2π(
cos θ′ + β

λ′
√

1− β2
x+

sin θ′

λ′
y − β cos θ′ + 1√

1− β2
ν ′t)

By comparing with the 2nd wave equation we get-

cos θ′ + β

λ′
√

1− β2
=

cos θ

λ
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sin θ′

λ′
=

sin θ

λ
β cos θ′ + 1√

1− β2
ν ′ = ν

On solving these 3 we get-

tan θ =
sin θ′

√
1− β2

cos θ′ + β
(1.5)

ν = ν ′(
1 + β cos θ′√

1− β2
) (1.6)

As usual you can get the equations for the other frame by replacing the sign
of β. They are

tan θ′ =
sin θ

√
1− β2

cos θ − β
(1.7)

ν ′ = ν(
1− β cos θ√

1− β2
) (1.8)

The above frequency formula has far reaching consequences. Notice that
unlike classical Doppler effect which depends both on the source speed and
the observer speed with respect to medium, the relativistic doppler effect
depends only on their relative velocity.

2 Dynamics of Special Relativity

2.1 Momentum

If we just use the old formula to define the momentum when we change frames
the momentum of the particle will change. But we can redefine momentum
such that momentum conservation is applicable. We define it as-

P =
mou√
1− β2

(2.1)

The reason we wrote m0 instead of m is in SR we have 2 kinds of masses
and we call this as the rest mass or proper mass. We define another mass

known as rest relativistic mass as m =
m0√
1− β2

. Mass is an ambiguous

term in SR. Some call rest mass as mass and some call relativistic mass
as mass. We use the later. Also m and m0 are related as

m2c4 = m2
0c

4 + p2c2 (2.2)
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We redefine Newton’s second law as-

F =
dp

dt
=

d(
mou√
1− β2

)

dt
(2.3)

2.2 Energy

We define Kinetic Energy as

K =
∫ u=u

u=0
F · dl

⇒ K =
∫ u=u

u=0

d(mu)

dt
· dl

Consider 1d motion. Then it reduces to

⇒ K =
∫ u=u

u=0

d(mu)

dt
· dx

⇒ K =
∫ u=u

u=0
d(mu) · dx

dt
⇒ K =

∫ u=u

u=0
(dmu+mdu) · du

Using equation 10 we get

K =

∫ m=m

m=m0

c2dm = mc2 −m0c
2 (2.4)

This equation suggests us that m is a measure of energy. We define rest
energy as m0c

2 and total energy as mc2. This formula again has many far
reaching consequences. Although Poincaré first considered photon’s energy
and mass are interconnected it was Einstein who said this is true for all
objects. Further it was proved experimentally many times. Even in day to
day chemical reactions some mass is being converted to energy. But it can
be easily detectable in case of nuclear reactions. So conservation of energy
and mass are now united.

E = mc2 (2.5)

E2 = (pc)2 + (m0c
2) (2.6)

We also get the below equation for E.

dE

dp
= u (2.7)
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2.3 Single particle dynamics

F =
dp

dt
=

d(Eu)

c2

dt

On solving we get-

F = m
du

dt
+

u(F · u)

c2
(2.8)

The acceleration(defined as
du

dt
)in general is not parallel to the force which

is the case in classical mechanics.

2.4 The Transformation Properties of Momentum, En-
ergy, Mass, and Force

We can just take momentum and force in one frame and then we can find
the particle’s dynamics. We then use particle’s kinematical properties in the
new frame and deduce the transformation laws. They are given in table 2.1
and 2.2

From S to S ′ From S ′ to S

p′x =
px − Ev

c2√
1− v

c2

px =
p′x + E′v

c2√
1− v

c2

p′y = py py = p′y

p′z = pz pz = p′z

Table 2.1: Relativistic momentum transformation
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From S to S ′ From S ′ to S

F ′x = Fx − uyv

c2−uxvFy −
uzv

c2−uxvFz Fx = F ′x + uyv

c2+u′xv
F ′y + uzv

c2+u′xv
F ′z

F ′y =

√
1− v2

c2

1−uxv

c2
Fy Fy =

√
1− v2

c2

1+
u′xv

c2

F ′y

F ′z =

√
1− v2

c2

1−uxv

c2
Fz Fz =

√
1− v2

c2

1+
u′xv

c2

F ′z

Table 2.2: Relativistic momentum transformation

2.5 Need for a relativistic gravitation theory

A very important formulation of Special relativity was done by Hermann
Minkowski(he was a maths professor to Einstein) in 1907(2 years after
Einstein).It is given in the next chapter. It was a geometrical approach to
SR using tensors and other things which we will learn later. Einstein initially
argued that it was not necessary to include all that maths since it can be
understood simply.

Special Relativity explained us only about inertial frames. In Galilean
relativity we know that if we transform to a non-inertial frame we have to
consider Fictitious force and they are directly proportional to the mass of
an object. Newton was well aware of the fact that the gravitational mass
may be only approximately equal to the inertial mass. Where the masses are
defined as-

F = mia

Fg = mgg

Many precise experiments revealed that both the masses are exactly equal.

A thought experiment

Imagine a man inside a lift which is moving at an acceleration of g such
that fictions forces acts downwards. Assume that the whatever experiment
he does he cannot tell whether he is on a stationary lift on earth or in an
accelerating lift in space. Using the doppler effect formula we can say that
any photon emitted from a point downwards will be relieved with higher
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frequency. The same thing can be explained on a lift which is at rest by
using the formula E = hν. Since it gains energy while moving downwards
it’s ν is increased. But why is the frequency increased? The number of waves
coming from the upper point is same as received at the down point. The only
possible explanation for this is that time passes slowly near the surface
of gravitational object.

To explain this a relativistic gravitational theory is needed. mi = mg was
considered as a coincidence for many years. But Albert Einstein observed the
physical significance of this and concluded that gravity and factious forces
are somewhat similar. He, after several thought experiments understood
that there are some fundamental problems in Newtons law of Gravitation.
He concluded that the universe is Non-Euclidean. He later understood
the importance of geometry in relativity.

3 Prerequisites for General Relativity

Unlike SR, General Relativity needs a lot of prerequisites. In this chapter
we are going to look at these.

3.1 Tensor Algebra

The earliest documented mention of the spherical Earth concept dates from
around the 5th century BC, when it was mentioned by ancient Greek philoso-
phers. Before that everyone used to believe earth was flat. It is really hard
to figure that earth was round in those days. It almost looks like flat for us.
Similar to that we always believe that we are living in a Euclidean space. It
turns out that we are living in some thing which is only locally Euclidean.

Definition 3.1. Manifold It is a set made up of pieces that ”look like”
open subsets of Rn such that these pieces can be ”sewn together” smoothly.
More precisely, an n-dimensional, C∞, real manifold M is a set together with
a collection of subsets {Oa} satisfying the following properties:

1. Each p ∈M lies in at least one Oα, i.e., the {Oα} cover M .

2. For each α, there is a one-to-one, onto, map φα : Oα → Uα, where Uα
is an open subset of Rn.

3. If any two sets Oα and Oβ overlap, Oα

⋂
Oβ 6= ∅ (where ∅ denotes

the empty set), we can consider the map ψβ ◦ ψ−1
α (where ◦ denotes

composition) which takes points in ψα[Oα ∩ Oβ] ∈ Uα ∈ Rn to points
in ψβ[Oα ∩ Oβ] ∈ Uβ ∈ Rn (see Fig. 3.1). We require these subsets
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of R” to be open and this map to be Cw, i.e., infinitely continuously
differentiable. (Since we are dealing here with maps of Rn into Rn the
advanced calculus notion of C∞ functions applies.)

Figure 3.1: An illustration of the map ψβ ◦ ψ−1
α arising when two coordinate

systems(Source: Wald[1])

Each map ψα is generally called a chart by mathematicians and a coor-
dinate system by physicists.

Transformation of coordinates

Definition 3.2. Contravariant vector A contravariant vector or con-
travariant tensor of rank (order) 1 is a set of quantities, written as Xa in the
xa-coordinate system, associated with a point P, which transforms under a
change of coordinates according to

X
′a =

n∑
b=1

[
∂x
′a

∂xb

]
p

Xb

From here on we are going to use the Einstein Summation Conven-
tion. We rewrite it as

X
′a =

∂x
′a

∂xb
Xb

The index a occurring on each side of this equation is said to be free and
may take on separately any value from 1 to n. The index b on the right-hand
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side is repeated and hence there is an implied summation from 1 to n. A
repeated index is called bound or dummy because it can be replaced by
any other index not already in use.

Definition 3.3. Covariant vector a covariant vector or covariant tensor of
rank (order) 1 is a set of quantities, written Xa in the xa-coordinate system,
associated with a point P, which transforms according to

X
′

a =
n∑
b=1

[
∂xb

∂x′a

]
p

Xb =
∂xb

∂x′a
Xb

Figure 3.2: An intuitive representation of both type of vectors

Position vectors etc are contravariant and vectors which is a gradient of a
potential field etc. are covariant vectors.Also contravariant indices are given
above and covariant indices below(see fig 3.2). The vectors are named as
this because when you scale the units by a factor the contravariant vectors
contra-vary(reduce by that factor) and covariant vectors co-vary.

A vector is an array containing elements which transforms in certain ways.
We can generalise vectors and define Tensors which are multidimensional
array transform in a similar way. A mixed tensor having contravariant rank
p and covariant rank q is said to have type or valence (p, q). Such a vector
transforms as-

X
′i1i2···ip

j1j2···jq =
∂x
′i1

∂xk1
· · · ∂x

′ip

∂xkp
∂xl1

∂x′j1
· · · ∂x

lq

∂x′jq
X
i1i2···ip

j1j2···jq
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Suppose we find in one coordinate system that two tensors, Xa
b = Y a

b

then by multiplying on both sides by
∂x
′c

∂xa
∂xb

∂x′d
we get-

∂x
′c

∂xa
∂xb

∂x′d
Xa
b =

∂x
′c

∂xa
∂xb

∂x′d
Y a
b

⇒ X
′c
d = Y

′c
d

Similarly we can say that all tensorial equations are coordinate-independent.
We can add 2 tensor fields at a point to get a different tensor field. But
we cannot add tensors at 2 different points to obtain a new tensor because
the addition(or subtraction) does not follow the transformation rules(since
the transformation matrix is calculated at 2 different points). However, un-
der linear coordinate transformations they are tensors as the transformation
matrix will be constant. A totally symmetrical covariant tensor is a
covariant tensor which is equal to its symmetric part.The symmetric part of
Xa1a2···ar is written as X(a1a2···ar) and is defined as

X(a1a2···ar) =
1

r!
(sum over all permutations of the indices a1 to ar)

A totally anti-symmetric tensor is a covariant tensor which is equal to
its anti-symmetric part.The anti-symmetric part of Xa1a2···ar is written as
X[a1a2···ar] and is defined as

X[a1a2···ar] =
1

r!
(alternating sum over all permutations of the indices a1 to ar)

For example,

X[abc] =
1

6
(Xabc +Xcab +Xbca −Xacb −Xcba −Xbac)

We can multiply two tensors of type (p1,q1) and (p2,q2) together and obtain
a tensor of type (p1 + p2, q1 + q2).

Given a tensor of mixed type (p, q), we can form a tensor of type (p —
1, q — 1) by the process of contraction, which simply involves setting a
raised and lowered index equal. And it can be considered as a multiplication
with Kronecker tensor . For example-

δbaX
a
bcd = Xa

acd = Ycd
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Definition 3.4. Commutator or Lie bracket Given two vector fields X
and Y we can define a new vector field called the commutator or Lie bracket
of X and Y by

[X, Y ] = XY − Y X

It follows from the above equation that

[X, Y ] = −[Y,X]

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0 (Jacobi’s identity)

We can also interpret a vector field as an operator defined as-(here ∂a =
∂

∂xa
)

X = Xa∂a

The above interpretation is coordinate independent(i.e X
′a∂
′
a = Xa∂a). Co-

ordinate free approach can be done more generally and can be applied but
in this article we are not using it.

In any coordinate system, we may think of the quantities

[
∂

∂xa

]
P

as

forming a basis for all the vectors at P, since any vector at P is given by

X = [Xa]p[∂a]p

. The vector space of all the contravariant vectors at P is known as the
tangent space at P and is written TP (M). In general, the tangent space
at any point in a manifold is different from the underlying manifold. In
Euclidean space and Minkowski space-time the tangent space at each point
coincides with the manifold.

3.2 Tensor calculus

We denote a partial derivative of a contravariant vector as ∂bX
a or

∂

∂xb
Xa

or Xa
,b or Xa

|b. These partial derivatives do not transform the way vectors
do. This is true for tensors in general. So we have to define other types
of differentiation which retain the tensorial character. We might think of
defining differentiation as the subtraction of two very nearby points devided
by some small quantity like distance. But again in general the the difference
of tensors at different points need not be a tensor.
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3.2.1 The Lie derivative

This is a derivative of a tensor field using another vector field. Let Y (x) be
a vector field. We now use the vector field Y (x) to provide a congruence of
curves along which derivatives of a tensor are calculated. Intuitively we are
going to drag the tensor at some point P along the curve passing through P
to some neighbouring point Q, and then compare this ’dragged-along tensor’
with the tensor already there. Since the dragged-along tensor will be of the
same type as the tensor already at Q, we can subtract the two tensors at
Q and so define a derivative by some limiting process as Q tends to P. The
curve xa(u) passing through P is

dxa

du
= Xa(x(u))

Transforming using

x
′a = xa + δuXa(x) = xa + δxa

Then we define Lie derivative of T
i1i2···ip

j1j2···jq denoted by LXT
i1i2···ip

j1j2···jq
as

LXT
i1i2···ip

j1j2···jq = lim
δu→0

T
i1i2···ip

j1j2···jq (x′)− T
′i1i2···ip

j1j2···jq (x′)

δu

From the above equation we can deduce that-

LXT
i1i2···ip

j1j2···jq = Y c(∂cT
i1i2···ip

j1j2···jq )

− (∂cY
i1)T

ci2···ip
j1j2···jq − · · · − (∂cY

ip)T i1i2···cj1j2···jq

+ (∂cY
j1)T

i1i2···ip
cj2···jq + · · ·+ (∂cY

jq)T
i1i2···ip

j1j2···c

• It is linear.

• It is Leibniz; that is, it satisfies the usual product rule for differentia-
tion.

• the Lie derivative of a tensor of type (p, q) is again a tensor of type (p,
q).

• It commutes with contraction

• The Lie derivative of a contravariant vector field Y a is given by the Lie
bracket of X and Y .
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3.2.2 Covariant Differentiation

Let us first consider a general contravariant vectorV expressed in ea0 is given
by V = V aea. The derivative of it is-

∂V

∂xb
=
∂va

∂xb
ea + V a∂ea

∂xb

The change in a basis vector is itself a vector, so it can be written in terms
of the original set of basis vectors-

∂ea
∂xb

= Γcabec

it follows after inter changing the dummy indices-

∂V

∂xb
=
∂va

∂xb
ea + V cΓacbea

We denote the above equation as

∇bV
a = V a

;b =
∂va

∂xb
+ V cΓacb

where the Γacb are defined by this equation, and are called the connections
or affine connections (they are not tensors).

By using the condition that the covariant derivative is a tensor we get
the following transformation properties for the affline connections(both are
equivalent).

Γ
′a
bc =

∂x
′a

∂xd
∂xe

∂x′b
∂xf

∂x′c
Γdef −

∂xd

∂x′c
∂xe

∂x′b
∂2x

′a

∂xe∂xf

Γ
′a
bc =

∂x
′a

∂xd
∂xe

∂x′b
∂xf

∂x′c
Γdef +

∂x
′a

∂xf
∂2xf

∂x′b∂x′c

For a general tensor we can generalize the covariant derivative by using that
it should be Leibniz etc. The generalized formula is given by-

∇eT
i1i2···ip

j1j2···jq = ∂eT
i1i2···ip

j1j2···jq

+ T
fi2···ip

j1j2···jq Γi1fe + · · ·+ T i1i2···fj1j2···jq Γ
ip
fe

− T i1i2···ipfj2···jq Γfj1e − · · · − T
i1i2···ip

j1j2···f Γfjqe

• The name covariant derivative is due to the fact that the derivative of
a tensor of type (p, q) is of type (p, q+1)

• It commutes with contraction
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• It is Leibniz.

• It is linear

• It is not commutative.

• We define δ̄a(x) = −ΓabcX
b(x)δxc and the vector Xa(x)+ δ̄Xa(x) is said

to be parallel to Xa.

It follows directly from the transformation laws that the sum of two con-
nections is not a connection or a tensor. However, the difference of two
connections is a tensor of valence (1,2), because the inhomogeneous term
cancels out in the transformation. For the same reason, the anti-symmetric
part of a Γabc, namely,

T abc = Γabc − Γacb

is a tensor called the torsion tensor. If the torsion tensor vanishes, then
the connection is symmetric, i.e.

Γabc = Γacb

From now on, unless we state otherwise, we shall restrict ourselves to symmet-
ric connections, in which case the torsion vanishes.The assumption that the
connection is symmetric leads to the following useful result. In the expression
for a Lie derivative of a tensor, all occurrences of the partial derivatives
may be replaced by covariant derivatives.

3.2.3 Absolute Derivative

In Euclidean spaces we know how to transport vectors parallel to themselves.
There we transport a vector along a curve C given by x = x(u) with tangent

field dxa

dx
= Xa as follows- we assume a vector field such that

dva

du
= 0 along

the curve. Now we ca generalize in to any tensor as follows. We define

Absolute Derivative denoted by
D

Du
(T

i1i2···ip
j1j2···jq ) or ∇XT

i1i2···ip
j1j2···jq

as follows-

D

Du
(T

i1i2···ip
j1j2···jq ) = ∇XT

i1i2···ip
j1j2···jq = Xc∇cT

i1i2···ip
j1j2···jq

The tensor is said to be parallely propagated or transported along the
curve C if

D

Du
(T

i1i2···ip
j1j2···jq ) = 0
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• ∇fX+gY T = f∇XT + g∇Y T (here f,g are smooth functions)

Definition 3.5. Affine Geodesic It is defined as a curve along which the
tangent vector is propagated parallel to itself. In other words, the parallely
propagated vector at any point of the curve is is, parallel or proportional, to
the tangent vector at that point-

D

Du
(
dxa

du
) = λ(u)

dxa

du

or
∇XX

a = λXa

which on solving gives

d2xa

du2
+ Γabc

dxb

du

dxc

du
= λ

dxa

du

If the curve is parametrized in such a way that λ vanishes, then the parameter
is a privileged parameter called an affine parameter, often conventionally
denoted by s, and the affine geodesic equation reduces to ∇XX

a = 0 or

d2xa

ds2
+ Γabc

dxb

ds

dxc

ds
= 0

. An affine parameter s is only defined up to an affine transformation-
s→ αs+β(αand β are constants) We can use the affine parameter s to define

the affine length of the geodesic between two points P1 and P2 by
∫ P2

P1
, and

so we can compare lengths on the same geodesic(to compare lengths on
different geodesics we need a metric). Corresponding to every direction at a
point there is a unique geodesic passing through the point.

Riemann Tensor

As covariant differentiation is not commutative we define commutator as

∇[c∇d]T
i1i2···ip

j1j2···jq = ∇c∇dT
i1i2···ip

j1j2···jq −∇d∇cT
i1i2···ip

j1j2···jq

If we work out the commutator in the case of a vector Xa. We will get

∇[c∇d]X
a = (∂cΓ

a
bd − ∂dΓabc + ΓebdΓ

a
ec − ΓebcΓ

a
ed)X

b + (Γecd − Γedc)∇eX
a

We can reduce it to the below equation-

∇[c∇d]X
a = Ra

bcdX
b + (Γecd − Γedc)∇eX

a
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by defining Ra
bcd (called as the Riemann tensor) as-

Ra
bcd = ∂cΓ

a
bd − ∂dΓabc + ΓebdΓ

a
ec − ΓebcΓ

a
ed

At any point P in a manifold, we can introduce a special coordinate
system, called a geodesic coordinate system, in which [Γabc]P = 0 It can
be shown that the result can be extended to obtain a coordinate system
in which the connection vanishes along a curve, but not in general over the
whole manifold. If, however, there exists a special coordinate system in which
the connection vanishes everywhere, then the manifold is called affine flat
or simply flat.

If, we can transport a vector from one point to any other and the result-
ing vector is independent of the path taken, then the connection is called
integrable. We can prove following lemmas-

Lemma 3.1. A necessary and sufficient condition for a connection to be
integrable is that the Riemann tensor vanishes.

Lemma 3.2. A necessary and sufficient condition for a manifold to be affline
flat is that the connection is symmetric and integrable.

By combining above 2 we get-

Theorem 3.3. A necessary and sufficient condition for a manifold to be
affline flat is that the Riemann tensor vanishes.

The Metric

In Euclidean spaces we know that (ds)2 = (dxa)2.We can generalise this
notion using a metric Any symmetric covariant tensor field of rank 2, say
gab(x), defines a metric. A manifold with a metric is called a Riemannian
manifold. The infinitesimal distance or interval between two neighbouring
points xa and xa + dxa is defined by

ds2 = (ds)2 = gab(x)dxadxb

the length or norm of a contravariant vector Xa is defined by

X2 = gab(x)XaXb

The metric is said to be positive definite or negative definite if, for all
vectors X, X2 ¿ 0 or X2 ¡ 0, respectively. Otherwise, the metric is called
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indefinite(ex-spacetime in relativity). The angle between two vectors Xa and
Y a with X2 6= 0 and Y 2 6= 0 is given by

cos(X, Y ) =
gabX

aY b√
|X2|

√
|Y 2|

If the metric is indefinite then there exist vectors which are orthogonal to
themselves called null vectors. The determinant of the metric is denoted
by g = det(gab). If it is non zero then its inverse is called as contravariant
metric denoted by gab. We use gab,g

ab to lower and raise the indices.
From now we will be working with Riemannian manifolds , we shall regard

such associated contravariant and covariant tensors as representations of the
same geometric object. In particular,gab, δ

b
a and gab may all be thought of as

different representations of the metric g.
The interval S between two points P1 and P2 on a timelike curve C given

by x = xa(u) is given by

s =

∫ P2

P1

ds

du
du =

∫ P2

P1

√
gab

dxa

du

dxb

du
du

We define a timelike metric geodesic between any two points P1 and P2

as the privileged curve joining them whose interval is stationary under small
variations that vanish at the end points. Using calculus of variations, we
solve it the next chapter. The solution is(the equation of geodesics)-

gab
d2xb

du2
+ {bc, a}dx

b

du

dxc

du
=

(
d2s
du2

ds
du

)
dxb

du

where {ab, c} is called the Christoffel symbol of the first kind and is defined
by

{ab, c} =
1

2
(∂bgac + ∂agbc − ∂cgab)

Multiplying the solution by gad we get the simplified form

d2xa

du2
+

{
a
bc

}
dxb

du

dxc

du
=

(
d2s
du2

ds
du

)
dxb

du

where

{
a
bc

}
is called the Christoffel symbol of the second kind and is defined

by {
a

bc

}
= gad{bc, d}
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If, we choose a parameter u which is linearly related to the interval s then
the right-hand side vanishes. In the case of an indefinite metric, there exist
geodesics for which the distance between any two points is zero called null
geodesics. It can be shown that these curves can be parametrized by a
special parameter u, called an affline parameter, such that their equation
does not possess a right-hand side,that is-

d2xa

du2
+

{
a
bc

}
dxb

du

dxc

du
= 0

The Metric connection

If we have a manifold endowed with both an affine connection and met-
ric, then it possesses two classes of curves, affine geodesics and metric
geodesics, which will be different. However the two classes will coincide if
we take

Γabc =

{
a

bc

}
⇒ Γabc =

1

2
gad(∂bgdc + ∂cgdb − ∂dgbc)

From now on, we shall always work with the metric connection and we shall
denote it by Γabc rather than

{
a
bc

}
,

Theorem 3.4. If ∇a denotes covariant derivative with respect to the affine
connection Γabc, then the necessary and sufficient condition for the covari-
ant derivative of the metric to vanish is that the connection is the metric
connection.

In a metric connection-

• ∇cδ
a
b = 0

• ∇cg
ab = 0

• ∂cgab = Γdacgdb + Γdbcgad

• ∂cg = ggab∂cgab = 2gΓaac

• ∇cg = 0

If, there does exist a coordinate system in which the metric reduces to diag-
onal form with ±1 diagonal elements everywhere, then the metric is called
flat.

Theorem 3.5. A necessary and sufficient condition for a metric to be flat
is that its Riemann tensor vanishes.
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Tensors related to the Riemann tensor

We know that

Ra
bcd = ∂cΓ

a
bd − ∂dΓabc + ΓebdΓ

a
ec − ΓebcΓ

a
ed

Γabc =
1

2
gad(∂bgdc + ∂cgdb − ∂dgbc)

We get the following symmetries-

Ra
bcd = −Ra

bdc

Ra
bcd +Ra

dbc +Ra
cdb = 0

Rabcd = −Rabdc = −Rbacd = Rcdab

Rabcd +Radbc +Racdb = 0

where Rabcd = gaeR
e
bcd In n-dimensions the number of independent compo-

nents in Ra
bcd is

n2(n2 − 1)

12
The curvature tensor satisfies a set of differential

identities called the Bianchi identities:

∇aRdebc +∇cRdeab +∇bRdeca = 0

The Ricci tensor is defined by the contraction

Rab = Rc
acb = gcdRdacb

The Ricci scalar or curvature scalar is defined by the contraction

R = gabRab

These two can be used to define the Einstein tensor-

Gab = Rab −
1

2
gabR

The Einstein tensor can be shown to satisfy the contracted Bianchi iden-
tities-

∇bG
b
a

If n = 4, Rabcd has twenty independent components — ten of which are given
by Rab and the remaining ten by the Weyl tensor. The Weyl tensor or
conformal tensor Cabcd is defined in n dimensions, (n > 2) by

Cabcd = Rabcd +
1

n− 2
(gabRcb + gbcRda − gacRdb − gbdRca)

+
R

(n− 1)(n− 2)
(gacgdb − gadgcb)
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In 4-d

Cabcd = Rabcd +
1

2
(gabRcb + gbcRda − gacRdb − gbdRca)

+
R

6
(gacgdb − gadgcb)

Weyl tensor possesses the all symmetries as the Riemann tensor, it possesses
an additional symmetry Ca

bcd = 0. One can think of the Weyl tensor as that
part of the curvature tensor for which all contractions vanish.

Two metrics gab and gab are said to be conformally related or con-
formal to each other if gab = Ω2gab where Ω(x) is a non-zero differentiable
function. Given a manifold with two metrics defined on it which are confor-
mal, then it is straightforward to show that angles between vectors and ratios
of magnitudes of vectors, but not lengths, are the same for each metric. The
metrics also possess the same Weyl tensor(it is conformally invariant but
gab,Γ

a
bc,R

a
bcd are not). A metric is said to be conformally flat if it can be

reduced to the form gab = Ω2ηab where ηab is a flat metric. We can prove-

Theorem 3.6. A necessary and sufficient condition for a metric to be con-
formally fiat is that its Weyl tensor vanishes everywhere.

Theorem 3.7. Any two dimensional Riemannian manifold is conformally
flat.

3.3 Integration,variation and symmetry

Tensor densities

A tensor density of weight W, denoted conventionally by a gothic letter,
Ti1···j1···, transforms like an ordinary tensor, except that in addition the Wth

power of the Jacobian J =

∣∣∣∣ ∂xa∂x′a

∣∣∣∣ appears as a factor, i.e.

T
′i1···

j1··· = Jw
∂x
′i1

∂xk1
· · · ∂x

l1

∂x′j1
· · ·Tk1···l1···

The product of two tensor densities of weight W1 and W2 is a tensor density
of weight W1 +W2. We defie its covariant derivative as

∇cT
i1···

j1··· = usual terms if Ti1···j1··· were a tensor−WΓddcT
i1···

j1···
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the covariant derivative of a vector density of weight W i

∇cT
a = ∂cT

a + ΓabcT
b −WΓbbcT

a

In the special case when W = +1 and c = a, we get the important result
(both these quantities are scalar densities of weight 1)

∇aT
a = ∂aT

a

The Levi-Civita alternating symbol

The Levi-Civita alternating symbol(it is similar to Kronecker delta) εabcd is
a completely anti-symmetric tensor density of weight +1 and contravariant
rank 4, whose values in any coordinate system is +1 or — 1 if, abcd is an
even or odd permutation of 0123, respectively, and zero otherwise. It can be
used, in particular, to form the determinant of a second-rank density

detTab =
1

4!
εabcdεefghT

aeTbfTcgTdh

We define the generalized Kronecker delta by

δabcd =

∣∣∣∣δac δbc
δad δbd

∣∣∣∣
We can similarly generalize for δabcdef · · · . We also get

εabcdεefgh = δabcdefgh

εabcdεefgd = δabcefg

εabcdεefcd = 2δabef

εabcdεebcd = 3!δae

εabcdεabcd = 4!

The metric determinant

As gab is (0,2) type tensor its determinat is a scalar density of weight +2. In
the later chapters, we shall be working with metrics of negative signature in
which case g will be negative, and so we write it the equivalent form

(−g′) = J2(−g)√
−g′ = J(

√
−g)
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So (−g)
1
2 is a scalar density of weight +1. It will be useful in integration.

We get
∇a[(−g)

1
2T i1···j1··· ] = ∂a[(−g)

1
2T i1···j1··· ]

∇c(−g)
1
2 = 0

⇒ ∇a[(−g)
1
2T i1···j1··· ] = (−g)

1
2∇a[T

i1···
j1··· ]

Integrals

Unlike tensors in general, we can add a scalar field Φ evaluated at two dif-
ferent points, and the resulting quantity is still a scalar. It turns out that
the volume element dΩ is not a scalar but, as we shall see, a scalar density
of weight |1. It follows that we can integrate a scalar density Φ of weight +1
over a region Ω, ∫

Ω

ΦdΩ

Consider an m-dimensional subspace of M whose parametric equation is xa =
xa(ui). The volume element of this subspace is defined to be

dτa1···am = δa1···amb1···bm
∂xa1

∂u1

· · · ∂x
am

∂um
du1 · · · dum

This element is an mth rank contravariant tensor under coordinate trans-
formations and behaves like a scalar under arbitrary change of parameter.
Hence, if Xa1···am is an mth rank covariant tensor, then Xa1···amdτ

a1···am is
a scalar under both coordinate and parameter transformations, and we can
form the integral.

Theorem 3.8 (Stokes’ theorem). Stokes’ theorem for a simply connected
m-dimensional subspace Ωm bounded by the (m - l)-dimensional subspace
∂Ωm = Ωm−1:∫

∂Ωm

Xa1···amdτ
a1···am−1 =

∫
Ωm

∂amXa1···amdτ
a1···am

The Euler-Lagrange equation for L is-

∂L

∂y
− d

dx

(
∂L

∂y′

)
From the above equation we can prove the geodesic equation-

gab
d2xb

du2
+ {bc, a}dx

b

du

dxc

du
=

(
d2s
du2

ds
du

)
dxb

du
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A metric gab is form-invariant or simply invariant under the transfor-
mation xa → x

′a if g′ab(y) = gab(y) for all coordinates yc. Then a transfor-
mation leaving gab form-invariant is called an isometry. Killing vector
fields are those which satisfy LXgab = 0 .It can be shown that

Lemma 3.9. An infinitesimal isometry is generated by a Killing vector
Xa(x) satisfying LXgab = 0.

3.4 Special Relativity using Minkowski space-time

Special Relativity gave us the notion of spacetime, which is a geometrical
representation of space and time in a 4-d space. The standard conven-
tion here is that the Greek alphabet(µ,ν etc) is used for space and time
components where as the Latin alphabet(i,j etc) is used for only spatial
components. From here on we take c = 1 for convenience. Minkowski
space-time, or simply flat space, is defined as a four-dimensional manifold
endowed with a flat metric of signature - 2. Since the metric is flat, there
exists a special coordinate system covering the whole manifold in which the
metric is diagonal, with diagonal elements equal to ± 1. The special coordi-
nate system is called a Minkowski coordinate system and is written

(xa) = (ct, x, y, z) = (t, x, y, z) (3.1)

We use the timelike sign convention or Landau–Lifshitz sign conven-
tion in which the Minkowski line element takes the form

ds2 = dt2 − dx2 − dy2 − dz2 = ηabdx
adxb (3.2)

where ηab = diag(1,−1,−1,−1) is called the Minkowski metric. Its Rie-
mann curvature tensor is zero as the metric is constant. But the Riemann
tensor vanishes for any coordinate system.(Example in spherical coordinates
gab = diag(1,−1,−r2 − r2sin2θ)). If X is a vector then it is said to be

• timelike if X2 > 0

• lightlike or null if X2 = 0

• spacelike if X2 < 0

The set of all lightlike points is called null cone or light cone(It is the
equation of a double cone). This null cone lies in the tangent space TP at
P , but since it is easy to show that the tangent space is itself a Minkowski
manifold we can identify the tangent space with the underlying manifold
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and regard the null cone as lying in the manifold. We will not be able to do
this when we go on to consider non-flat manifolds. manifolds. If we define
the timelike vector T a in Minkowski coordinates by T a = (1, 0, 0, 0), then a
timelike or null vector Xa is said to be

• future pointing if ηabX
aT b > 0(it will be in furture cone)

• past pointing if ηabX
aT b < 0(it will be in past cone)

The Lorentz transformations are defined as those linear homogeneous
transformations of Minkowski coordinates which leave the Minkowski metric
ηab invariant.

x
′a = Labx

b (3.3)

or

Lab =
∂x
′a

∂xb

It follows form previous result that

LacL
b
dηab = ηcd (3.4)

As Lorentz transformations are isometries it follows that Lorentz transfor-
mations preserve lengths and innner products of vectors. The Lorentz trans-
formations form a group called the Lorentz group L. The matrix Lab
is invertible, because if we take determinants of each side of (3.4) we get
det(Lab)= ±1. We get by keeping c=d=0

(L0
0)2 − [(L1

0)2 + (L2
0)2 + (L3

0)2] = 1

If det(Lab) = +1, then it is called proper or orientation preserving. If L0
0 > 1,

thenLab is called orthocronous or time-orientation preserving. The proper or-
thochronous transformations, denoted by L↑+ (read ’L arrow plus’) from a
subgroup of L. The Poincare group P consists of those linear inhomoge-
neous transformations which leave ηab invariant. A Poincare transformation
is made up of a Lorentz transformation together with an arbitrary translation
(in space and time), i.e.

x
′a = Labx

b + ta

A timelike world-line or timelike curve is defined as a curve whose tan-
gent vector is everywhere timelike. If, in particular, the curve is a geodesic,
it is called a timelike geodesic. Timelike curves represent tracks on which
material particles or observers can travel. Everything in upcone is called the

32



future and in the downcone is called past. The remaining space do not have
any fixed temporal order (it depends on the frame). Since Γabc vanishes in
Minkowski coordinates, the equations for a non-null geodesic reduce to

d2xa

du2
= 0 (3.5)

for some affine parameter u, where the tangent vector satisfies

ηab
dxa

du

dxb

du
= k

The geodesic is timelike or spacelike depending on whether k > 0 or k < 0,
respectively. In the case when k > 0, we introduce a new parameter

ū = ū(u)

(
dū

u
)2 = k

The parameter ū is called the proper time and is denoted by τ . So c2dτ 2 =
ds2. Which gives the formula which we got earlier

dτ 2 = dt2 − 1

c2
(dx2 + dy2 + dz2)

⇒ τ =

∫ t1

t0

(
1− v2

c2

) 1
2

dt (3.6)

We can even deduce all of special relativity from these 2 postulates-

Axiom 3.10. Space and time are represented by a four-dimensional manifold
endowed with a symmetric affline correction Γabc, and a metric tensor gab
satisfying the following:

1. gab is non-singular with signature — 2;

2. ∇cgab = 0;

3. Ra
bcd = 0;

Axiom 3.11. There exist privileged classes of curves in the manifold singled
out as follows:

1. ideal clocks travel along timelike curves and measure the parameter τ
defined by dτ 2 = gabdx

adxb.
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2. free particles travel along timelike geodesics.

3. light fays travel along null geodesics.

We have formulated SR at the beginning in the normal way. Just like clas-
sical mechanics can be formulated in Lagrangian mechanics and Hamil-
tonian mechanics , SR also can be done. For Classical mechanics we know
that-

L = T − V (3.7)

δS = δ

∫ t2

t1

Ldt = 0 (3.8)

H = T + V (3.9)

∂L

∂xa
− d

dt

(
∂L

∂ẋa

)
= 0 (3.10)

For Special relativity we generalize it to

L = −mo

√
1− u2 (3.11)

S = −m0

∫ τ2

τ1

(ηabẋaẋb)
1
2dτ (3.12)

H = E = p · u− L = m = m0(1− u2)
−1
2 (3.13)

∂L

∂xa
− d

dτ

(
∂L

∂ẋa

)
= 0 (3.14)

We can use four-vectors to make the equations which we provided at the
begining to look more compact.

ua =
dxa

dτ
(3.15)

ab =
dub

dτ
=
d2xb

dτ 2
= ẍb (3.16)

pa = − ∂L
∂ẋa

(3.17)

pa = gabpb = m0u
a (3.18)

fa =
dpa

dτ
(3.19)

lab = xapb − xbpa (3.20)

Where va,ab,pa and fa are the 4-vectors of velocity,acceleration,momentum
and force.
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4 Introduction to General Relativity

We have already discussed briefly on why we need General Relativity in
subsection 2.5. While searching for a General version of Special Relativity
Einstein had these principles as guidelines

1. principle of equivalence The motion of a gravitational test particle in
a gravitational field is independent of its mass and composition.

Or simply-There are no local experiments which can distinguish non-
rotating free fall in a gravitational field from uniform motion in space
in the absence of a gravitational field.

2. Mach’s principle The matter distribution determines the geometry.(Here
the privileged paths which particles and light rays travel on are called
as the ’geometry’ of the universe.)

3. principle of general covariance The equations of physics should have
tensorial form.(In Quantum Mechanics this is not totally true for ten-
sors but this is true for spinors.) or simply-All observers are equivalent.

4. principle of minimal gravitational coupling No terms explicitly contain-
ing the curvature tensor should be added in making the transition from
the special to the general theory.

5. correspondence principle It should reduce to Newtons Gravitation and
Special relativity under suitable conditions.

Since the principle of equivalence tells us that locally we cannot differentiate
between an accelerating lift and stationary lift in a gravitational field. If we
take two particles (sufficiently apart) then we can see that in the stationary
lift particles converge.

The non-local lift experiments reveal that we should focus our attention
on two neighbouring test particles in free fall in a gravitational field. We
look at this motion first of all in Newtonian theory using the tensors.
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Figure 4.1: Freely falling gravitational test particles at time t

Let 2 particles travel on curves C1 and C2 so that they reach the points
P and Q at time t (Fig. 4.1). If we use the time t as the parameter along
the curves, then the parametric equations of C1 are xα = xα(t) and those of
C2 are xα = xα(t) + ηα(t) If we define Kα

β by Kα
β = K α

β = ∂α∂βΦ(where

∂α = δαβ∂β). By using this notation we can deduce Newtonian geodesic
equations to-

D2ηα

Dτ 2
+Kα

β = 0 (4.1)

Kα
β = −Ra

bcde
α
av

bvce d
β (4.2)

4.1 The energy-momentum tensor

Incoherent matter

We start by considering the simplest kind of matter field, namely, that of non-
interacting incoherent matter or dust. Such a field may be characterized by
two quantities, the 4-velocity vector field of flow ua(x) ρ0 = ρ0(x). Let us
define the energy-momentum tensor Tab as

T ab = ρ0u
aub (4.3)

We can prove that ∂bTab = 0 this equation is equivalent to conservation of
4-momentum(which means both energy and momentum are combined). If
we use a non-flat metric in special relativity, then is replaced by its covariant
counterpart

∇bTab = 0
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4.1.1 Perfect fluid

A perfect fluid is characterized by three quantities: a 4-velocity ua =
dxa

dτ
;a

proper density field ρ0 = ρ0; and a scalar pressure field p = p(x). In the limit
as p vanishes, a perfect fluid reduces to incoherent matter. This suggests
that we take the energy-momentum tensor for a perfect fluid to be of the
form

T ab = (ρ0 + p)uaub − pgab (4.4)

4.1.2 Maxwell energy-momentum tensor

In order to write the Maxwells equations in tensorial form, we define an anti-
symmetric tensor F ab, called the electromagnetic field tensor or Maxwell
tensor, by

F ab =


0 Ex Ey Ez
−Ex 0 Bz −By

−Ey −Bz 0 Bx

−Ez By −Bx 0

 (4.5)

and the current density or source 4-vector ja by ja = (ρ, j). Then maxwell’s
equations reduce to

∂bF
ab = ja (4.6)

∂[aFbc] = ∂aFbc + ∂cFab + ∂bFca = 0 (4.7)

We define the Maxwell energy-momentum tensor as

T ab =
1

4π
(−gcdFacFbd +

1

4
gabFcdF

cd) (4.8)

4.2 The weak-field limit

We assume that there exists a privileged coordinate system xa = (ct, x, y, z)
in which the metric gab differs only slightly from the Minkowski metric ηab.
We also assume that the field is produced by bodies whose velocities are
small compared with c. If v is a typical velocity of the bodies, then we let ε
denote a small dimensionless parameter of order v

c
and our basic assumption

is
gab = ηab + εhab +O(ε2) (4.9)

For any function/ we assume the slow-motion approximation

ε
∂f

∂xα
≈ ∂f

∂x0
(4.10)
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Using these 2 approximations we can prove that in the weak field limit

g00 = 1 +
2φ

c2
+O(v/c) (4.11)

4.3 The Field Equations of GR

The field equations of General Relativity are-

Gab =
8πG

c4
Tab = 8πTab (4.12)

They can be viewed in three different ways

1. The field equations are differential equations for determining the metric
tensor gab from a given energy-momentum tensor Tab. This is a Machian
way of viewing the equations since one specifies a matter distribution
and then solves the equations to ascertain the resulting geometry. It
is also a natural way of looking at the Einstein-Maxwell equations,
namely, what geometry corresponds to a given Maxwell tensor? The
most important case of the equations is when Tab = 0, in which case
we are concerned with finding vacuum solutions.

2. The field equations are equations from which the energy-momentum
tensor can be read off corresponding to a given metric tensor gab. It was
originally thought that this would be a productive way of determining
energy-momentum tensors. We simply choose arbitrarily ten functions
of the coordinates, namely, the symmetric gab, and then we can compute
Gab and read off Tab. However, this rarely turns out to be very useful in
practice because the resulting Tab are usually physically unrealistic. In
particular, it frequently turns out that the energy density goes negative
in some region, which we reject as unphysical because the positive
character of energy density dominates gravitation theory.

3. The field equations consist of ten equations connecting twenty quan-
tities, namely, the ten components of gab and the ten components of
Tab. Hence, from this point of view, the field equations are to be
viewed as constraints on the simultaneous choice of gab and Tab. This
approach is used when one can partly specify the geometry and the
energy-momentum tensor from physical considerations and then the
equations are used to try and determine both quantities completely.

The field equations are very difficult to handle because they are non-linear.
Put another way, it means that you cannot analyse a complicated physical
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problem by breaking it up into simpler constituent parts. The non-linearity
reveals itself physically in the following way: the gravitational field produced
by some source contains energy and hence, by special relativity, mass, and
this mass in turn is itself a source of a gravitational field. The gravitational
field is coupled to itself. This non-linearity means that the equations are
very difficult to solve in general. Indeed, originally Einstein anticipated that
one would never be able to find an exact solution of them.

4.4 The cosmological term

Einstein was rather sceptical about the full field equations and regarded the
vacuum field equations as more fundamental. However, Einstein considered
that even these equations were deficient in that they violated Mach’s prin-
ciple in the form M2, since they admit Minkowski space-time as a solution.
This means that a test body in an otherwise empty universe would possess
inertial properties (as all bodies do in special relativity) even though there
is no matter to produce the inertia. In particular, he tried to find a static
closed solution of the field equations corresponding to a universe uniformly
filled with matter. In so doing, he found he was forced to modify the field
equations by introducing an extra term, the cosmological term Λ, where Λ is
a constant called the cosmological constant, so that they become (with our
sign conventions)

Gab − Λgab =
8πG

c4
Tab = 8πTab (4.13)

Since ∇bg
ab = 0 it is consistent with the requirement ∇bT

ab = 0. Indeed, if,
quite generally, we demand that the gravitational field equations should

1. be generally covariant,

2. be of second differential order in gab,

3. involve the energy-momentum tensor Tab linearly,

then it can be shown that the only equation which meets all of these require-
ments is

Rab + µRgab − Λgab = kTab

where µ, Λ, and k are constants. The demand that Tab satisfies the conser-
vation equations ∇bTab then leads to µ = −1

2
.

The constant Λ is assumed to be very small in some sense and only of
significance on a cosmological scale or on a quantum scale.
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5 Schwarzschild metric and black holes

Stationary solutions

A metric will be stationary if there exists a special coordinate system in
which the metric is visibly time-independent, i.e.

∂gab
∂x0

=∗ 0 (5.1)

where x0 is a timelike coordinate. We can show that if it satisfies in one
coordinate then in all coordinates it satisfies-

LXgab = 0 (5.2)

A space-time is said to be stationary if and only if it admits a timelike Killing
vector field.

Hypersurface-orthogonal vector fields

Let f(xa) = µ be a family of hypersurfaces ,where different members of the
family correspond to different values of µ. If we define the covariant vector

field na =
∂f

∂xa
to the family of hypersurfaces by

na =
∂f

∂xa
(5.3)

Then nadx
a = gabn

adxb = 0. It follows that na is orthogonal to S(one of the
hypersurfaces) and is therefore known as the normal vector field to S at P .
Any other vector field Xa is said to be hypersurface-orthogonal if it is
everywhere orthogonal to the family of hypersurfaces, in which case it must
be proportional to na everywhere, i.e.

Xa = λ(x)na = λf,a (5.4)

We can show the following theorem

Theorem 5.1. Any non-null Killing vector field satisfying is necessarily
hypersurface-orthogonal with λ = X2
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Static solutions

If a solution is stationary, then, in an adapted coordinate system, the metric
will be time-independent but the line element will still in general contain
cross terms in dx0dxα. If, in addition,the cross terms are absent, the metric
is called static.The assumption that the solution is static means that ds2 is
invariant under a time reversal about any origin of time.

Theorem 5.2. A space-time is said to be static if and only if it admits a
hypersurface- orthogonal timelike Killing vector field.

Theorem 5.3. In a static space-time, there exists a coordinate system adapted
to the timelike Killing vector field in which the metric is time-independent
and no cross terms appear in the fine element involving the time.

It can be shown that there still exists the coordinate freedom

x
′0 = Ax0 +B

x
′α = h′α(xβ)

where A and B are constants and the functions h
′α are arbitrary. If the

boundary conditions require g00 → 1 at spatial infinity, then this requiresA =
+1 . Neglecting time reversal, then this fixes A to be 1, and so we have
defined a time coordinate, called world time, which is defined to within an
unimportant additive constant.

5.1 Derivation of the Schwarzschild Solution

The assumptions we take in this solution are-

1. It is a spherically symmetric solution

2. The electric charge of the mass, angular momentum of the mass, and
universal cosmological constant are all zero.

Our starting ansatz, is that there exists a special coordinate system

(xa) = (x0, x1, x2, x3) = (t, r, θ, φ)

in which the line element has the form

ds2 = A(t, r)dt2 − 2B(t, r)dtdr − C(t, r)dr2 −D(t, r)(dθ2 + sin2θdφ2)
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where A, B, C, and D are as yet undetermined functions of t and r. If we
introduce a new radial coordinate by the transformation r → r′ = D

1
2 then

the line element becomes

ds2 = A′(t, r′)dt2 − 2B′(t, r′)dtdr′ − C ′(t, r′)dr2 − r′2(dθ2 + sin2θdφ2)

Consider the differential

A′(t, r′)dt−B′(t, r′)dr′

we can always multiply this by an integrating factor, I = I(t, r′) say, which
makes it a perfect differential. We use this result to define a new time
coordinate t′ by requiring-

dt′ = I(t, r′)[A′(t, r′)dt−B′(t, r′)dr′]
⇒ dt

′2 = I2(A
′2dt2 − 2A′B′dtdr′ +B

′2dr
′2)

⇒ ds2 = A′I−2dt′2 − (C ′ − A′−1B
′2)dr

′2 − r′2(dθ2 + sin2θdφ2)

Defining two new functions ν and λ by(where ν = ν(t, r)) and λ = λ(t, r)

A′I−2 = eν

C ′ − A′−1B
′2 = eλ

The definitions of v and A in (14.31) and (14.32) are given in terms of expo-
nentials, which, since they are always positive, guarantees that the signature
of the metric is −2. In fact, there are rigorous arguments which confirm that
the most general spherically symmetric line element in four dimensions (with
signature −2) can be written in the canonical form.

ds2 = eνdt2 − eλdr2 − r2(dθ2 + sin2θdφ2) (5.5)

From the above line element we get-

gab = diag(eν ,−eλ,−r2,−r2sin2θ)

gab = diag(e−ν ,−e−λ,−r−2,−r−2sin−2θ)
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If we denote derivatives with respect to t and r by dot and prime, respectively,
then the non-vanishing components of the mixed Einstein tensor are

G 0
0 = e−λ

(
λ′

r
− 1

r2

)
+

1

r2
(5.6)

G 1
0 = −e−λr−1λ̇ = −eλ−µG 0

1 (5.7)

G 1
1 = −e−λ

(
ν ′

r
+

1

r2

)
+

1

r2
(5.8)

G 2
2 = G 3

3 =
1

2
e−λ

(
ν ′λ′

2
+
λ′

r
− ν ′

r
− ν

′2

2
− ν ′′

)
+

1

2
e−ν

(
λ̈+

λ̇2

2
− λ̇ν̇

2

)
(5.9)

The contracted Bianchi identities reveal that equation (5.9) vanishes auto-
matically if the first 3 equations all vanish. Hence, there are three indepen-
dent equations to solve, namely,

e−λ
(
λ′

r
− 1

r2

)
+

1

r2
= 0 (5.10)

e−λ
(
ν ′

r
+

1

r2

)
− 1

r2
= 0 (5.11)

λ̇ = 0 (5.12)

Adding 5.10 and 5.11-

λ′ + ν ′ = 0

⇒ λ+ ν = h(t)

where h is an arbitrary function of integration. Here, A is purely a function
of r by (5.12), and so (5.10) is simply an ordinary differential equation, which
we write

e−λ − re−λλ′ = 1 (5.13)

⇒ (re−λ)′ = 1 (5.14)

⇒ re−λ = r + constant (5.15)

Choosing the constant of integration to be −2m, for later convenience, we
then obtain

eλ =

(
1− 2m

r

)−1
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So, at this stage, the metric has been reduced, to

gab = diag(eh(t)

(
1− 2m

r

)
,−
(

1− 2m

r

)−1

,−r2,−r2sin2θ) (5.16)

The final stage is to eliminate h(t). This is done by transforming to a new
time coordinate t′ i.e. t→ t′ where t′ is determined by the relation

t′ =

∫ t

c

e
1
2
h(u)du

where c is an arbitrary constant. Then the only component of the metric
which changes is g

′
00 =

(
1− 2m

r

)
. Dropping primes, we have shown that it

is always possible to find a coordinate system in which the most general
spherically symmetric solution of the vacuum field equations is

ds2 =

(
1− 2m

r

)
dt2 −

(
1− 2m

r

)−1

dr2 − r2(dθ2 + r2sin2θdφ2) (5.17)

This is the Schwarzschild line element.

5.2 Properties of the Schwarzschild solution

We restrict attention to the exterior region r > 2m where the coordinates
t and r are timelike and spacelike respectively. It is immediate from (5.17)
that gab,0=∗0, and so the solution is stationary. We can also prove that it is
static. This is stated as

Theorem 5.4 (Birkhoff’s theorem). A spherically symmetric vacuum solu-
tion in the exterior region is necessarily static.

This is unexpected because in Newtonian theory spherical symmetry has
nothing to do with time dependence. This highlights the special character
of non-linear partial differential equations and the solutions they admit. If a
spherically symmetric source is restricted to the region r < a for some a >
2m, then the solution for r > a must be the Schwarzschild solution. However,
the converse is not true: a source which gives rise to an exterior Schwarzschild
solution is not necessarily spherically symmetric. If we take the limit
of (5.17) as r →∞, then we obtain the flat space metric of special relativity
in spherical polar coordinates. We have therefore shown that a spherically
symmetric vacuum solution is necessarily asymptotically flat. Let us
attempt an interpretation of the constant m appearing in the solution, by
considering the Newtonian limit. A point mass M situated at the origin O
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in Newtonian theory gives rise to a potential φ =
−GM
r

. Inserting this into

the weak-field limit gives

g00 ≈ 1 +
2φ

c2
= 1− 2GM

c2r

⇒ m =
GM

c2
= M(in relativistic units)

5.3 Gravitational Singularities

The Schwarzschild coordinates do not cover the axis θ = 0, π because the
line element becomes degenerate there and the metric ceases to be of rank
4. This degeneracy could be removed by introducing Cartesian coordinates
(x, y, z). Such points are called coordinate singularities because they
reflect deficiencies in the coordinate system used and are therefore removable.
There are two other values of the coordinates for which the Schwarzschild
solution is degenerate, namely, r = 2m and r = 0. The value r = 2m is
known as the Schwarzschild radius(rs). The hypersurface r = 2m is a
removable coordinate singularity. This is indicated by the Riemann tensor
scalar invariant

RabcdR
abcd = 48m2r−6

which is finite at r = 2m. The singularity at the origin is irremovable and
is variously called an Gravitational, curvature, physical, essential, or
real singularity. The normal interpretation of the Schwarzschild solution
is as a vacuum solution exterior to some spherical body of radius a > 2m.
A different metric would describe the body itself for r < a, and would then
correspond to some distribution of matter resulting in a non-zero energy-
momentum tensor.

5.4 Space-time diagrams

We first consider the class of radial null geodesics defined by ds2 = θ̇2 = φ̇ =
0. Then using the geodesic equation given earlier we get(where a dot denotes
differentiation with respect to an affine parameter u along the null geodesic)(

1− 2m

r

)
ṫ2 −

(
1− 2m

r

)−1

ṙ2 = 0
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The Euler-Lagrange equation corresponding to a = 0 is

d

[(
1− 2m

r

)
ṫ

]
du

= 0

⇒
(

1− 2m

r

)
ṫ = k

⇒ ṙ2 = k2

⇒ ṙ = ±k

from which it follows that r is an affine parameter.

dt

dr
=
ṫ

ṙ

⇒ dt

dr
=

r

r − 2m

⇒ t = r + 2mln|r − 2m|+ constant

In the region I, by r > 2m r increases as t increases. We define the curves
to be a congruence of outgoing radial null geodesics. Similarly, r < 2m
gives the congruence of ingoing radial null geodesics. The diagram seems
to suggest that an observer in region I moving in towards the origin would
take an infinite amount of time to reach the Schwarzschild radius r = 2m. It
turns out that this space-time diagram is misleading,
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Figure 5.1: in Schwarzschild coordinates

Let us consider the path of a radially infalling free particle. It will move
on a timelike geodesic given by the 2 equations(where a dot now denotes
differentiation with respect to τ)(

1− 2m

r

)
ṫ2 −

(
1− 2m

r

)−1

ṙ2 = 1(
1− 2m

r

)
ṫ = 1

⇒
(
dτ

dr

)2

=
r

2m

⇒ τ − τ0 =
2

3
√

2m
(r

3
2
0 − r

3
2 )

where the particle is at r0 at proper time t0. No singular behaviour occurs
at the Schwarzschild radius and the body falls continuously to = 0 in a
finite proper time. The coordinate t is useful and physically meaningful
asymptotically at large r since it corresponds to the proper time measured
by an observer at rest far away from the origin. From the point of view of
such an observer, it takes an infinite amount of time for a test body to reach
r = 2m. However, from the point of view of the test body itself, it
reaches both r = 2m and r = 0 in finite proper time.
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Figure 5.2: Radially infalling particle in τ and t

Eddington-Finkelstein coordinates

We are replacing t with t̄ defined by t̄ = t + 2mln|r − 2m| then the line
element becomes-

ds2 =

(
1− 2m

r

)
dt̄2 − 4m

r
dt̄dr −

(
1 +

2m

r

)
dr2 − r2(dθ2 + r2sin2θdφ2)

(5.18)

Figure 5.3: in Eddington-Finkelstein coordinates
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Advanced Eddington-Finkelstein coordinates

We are replacing t̄ with ν defined by ν = t̄+r then the line element becomes-

ds2 =

(
1− 2m

r

)
dν2 − 2dνdr − r2(dθ2 + r2sin2θdφ2) (5.19)

5.5 Neutral non-rotating black holes

The Schwarzschild solution, taken to be valid for all r > 0, is called a Neutral
non-rotating black hole or Schwarzschild black hole. We already have
seen the space time diagrams for object whose entire solution is given by
Schwarzschild metric. For much larger masses, General relativity predicts
that a spherically symmetric star will necessarily contract until all matter
contained in the star arrives at a singularity at the centre of symmetry.

Figure 5.4: Gravitational collapse (one spatial dimension suppressed)

The surface r = rs = 2m is called an event horizon because it repre-
sents the boundary of all events which can be observed in principle by an
external inertial observer. Anything which passes through it will never come
back because its future cone will completely point towards the singularity.
We already saw that inside the event horizon the timelike coordinate be-
haves as spacelike and the radial coordinate behaves as timelike.
Which means that inside event horizon future cones will always point towards
singularity.
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5.5.1 Problems with Singularity

We have only seen the solution of Neutral non-rotating black holes. But
even in charged and rotating black holes event horizons and singularities
exist. We might think other relativistic gravitational theories might not
have singularities. However, Penrose and Hawking have managed to prove
some remarkable theorems, called as singularity theorems, which suggest
that many of the qualitative features of this collapse picture remain in a
more general situation. Their results do not depend on the particular field
equations of general relativity, but on much weaker assumptions such as the
geometrical interpretation of gravity and the consequent curvature of space-
time, relativistic causality, and the dominant energy conditions.(Refer 8.2 in
Hawking and Ellis[2]).

Another important thing is the gravitational collapse deals with situations
of high densities and that these are really the province of quantum theory. It
seems likely that a classical theory like general relativity might be modified
profoundly by quantum effects. Indeed, some theories of quantum gravity
suggest that the collapse is halted before a singularity is reached. But as of
now, there is still no complete and consistent quantum theory of gravity.

Further reading

For the special relativity part I recommend the book Introduction to Special
Relativity[3]. For GR if you want a good book for introduction read Intro-
ducing Einstein’s Relativity[4]. It is more intuitive and beginner friendly and
is used as the main book for this. If you like mathematics more read General
Relativity[1]. It is more advanced than the previous one. If you like book
full of anecdotes see Gravitation[5](it is considered as the bible for general
relativists). It is a very lengthy book. And if you want a very advanced book
read Hawking and Ellis[2] or S.Chandrasekhar[6].
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